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Abstract: Evolutionary computation is an artificial intelligence technique based on the 

principle of natural selection and natural genetics. The optimal design of process plant is 

complex and it involves multitude of equality and inequality constraints. In this study, an 

optimal design of William-Otto (WO) process plant is carried out using Differential Evolution 

algorithm (DE). The design problem is selected as it resembles the real time optimal design of 

process plants. From the optimal design results, it is noticed that differential evolution 

outperforms the other methodologies. It is concluded that DE gives the most reliable and robust 

technique for the optimization of process plants. 

Keywords: optimal design, evolutionary computation, differential evolution algorithm, WO 

process plant. 
 

 

Introduction 

Optimization methods coupled with modern tools of computer-aided design are used to enhance the 

creative process of conceptual and detailed design of engineering system. Optimization problems are to be 

handled by a suitable and reliable optimization tool, which integrates the entire process steps by a single global 

optimization approach. Evolutionary computing is a rapidly growing area of artificial intelligence.  

The design of Williams Otto process plant (WO) process had been studied with variety of optimization 

techniques in several literature
1-10

. These techniques suffer from many drawbacks that include requirement of 

significant computational effort in the formulation of problem, inefficiency in handling the equality constraints, 

requirement of good starting values for the search and are found to be unsuitable for unbounded/non-convex 

natured problems. It has been proved that the optimal design of process plant can be effetely achieved by the 

use of Genetic Algorithm
11

. In the present study, Differential Evolutionary techniques have been used to 

optimize the Williams Otto process plant (WO) which represents difficult non-linear optimization with the 

equality and inequality constraints. 

Differential Evolution 

Differential Evolution (DE) is an improved version of genetic algorithm. DE is a global optimization 

technique that is exceptionally simple, significantly faster and robust. The overall structure of the DE algorithm 

resembles that of most other evolutionary computation techniques i.e., population based searches.  The fittest of 

an offspring competes one-to-one with that of corresponding parent, which is different from the other 

evolutionary algorithms. This one-to-one competition gives rise to faster convergence rate. DE is the real coded 

genetic algorithm combined with an adaptive random search using a normal random generator. DE uses floating 

point numbers that are more appropriate than integers for representing points in a continuous space
12

. The DE 

algorithm
13

 is described as follows: 
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Initialization 

The initial population of NP individuals is randomly selected based on uniform probability distribution 

for all variables to cover the entire search space uniformly. The initial population is represented as 

 minmaxmin
iii

0
i ZZZZ    PN1i 

 and   10,                    (1) 

 

Mutation 

Differential evolution generates new parameter vectors by adding the weighted difference vector 

between two population members to a third member. The essential ingredient of mutation operation is the 

difference vector. A perturbed individual is therefore generated on the basis of the parent individual in the 

mutation process by 
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   10F ,                                             (2) 

The scaling factor F ensures the fastest possible convergence. The perturbed individual is essentially a 

noisy random vector of
G

pZ
. The parent individual depends on the circumstance in which the type of the mutation 

operation is employed. If the new decision variable is out of the limits (lower and upper) by an amount, this 

amount is subtracted or added to the limit violated to shift the value inside the limits.  

Crossover 

In order to extend the diversity of the new individuals in the next generation, the perturbed individual 
1ˆ G

iZ
 and the current individual 

G

iZ
 are selected by a binomial distribution to perform the crossover operation to 

generate the offspring. In this crossover operation the gene of an individual at the next generation is produced 

from the perturbed individual and the present individual.  

i.e. 
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Where the crossover factor  10CR ,  is assigned by the user. 

 

Evaluation and Selection 

In the evaluation process an offspring competes one-to-one with the parent. The parent is replaced by 

its offspring if the fitness of the offspring is better than that of its parent. Contrarily the parent is retained in next 

generation if the fitness of offspring is worse than the parent. The first step involved in the evaluation process is 

one-to-one competition and the second step is the selection of best individual in the population as given by  

    ˆ  , min  arg 11   G

i

G

i

G

i ZZZ 
   PN1i 

           (4) 

  P

11 N1, i ,  min  arg ˆ   G

i

G

b ZZ 
                              (5) 

Then the vector with lesser cost replaces the initial population. With the members of the next generation 

thus selected, the cycle repeats until the maximum number of generations or no improvement is seen in the best 

individual. Figure1 shows the steps involved in basic differential evolution.   



Gopalakrishnan B et al /Int.J. ChemTech Res.2014-2015,7(4),pp 1682-1688. 1684 

 

 

 

DE is advantageous as the minimization method is self-organizing so that very little input is required 

from the user. DE’s self-organizing scheme takes the difference vector of two randomly chosen population 

vectors to perturb an existing vector. The perturbation is done for every population vector. Therefore, DE is 

easy to use and requires only few control variables to steer the optimization. These variables are also robust and 

easy to choose. DE has good convergence properties that are mandatory for a good minimization algorithm. It 

consistently converges to the global minimum in consecutive independent trials
13

. 

Differential Evolution Control Parameters 

Differential evolution presents great convergence characteristics and requires few control parameters, 

which remain fixed throughout the optimization process and need minimum tuning. The control parameters are 

the population size NP, weight applied to the random differential F and crossover constant CR. The selection of 

the control variables i.e., NP, F and CR is seldom difficult and some general guidelines can be followed. A 

reasonable choice for the population size is between 5 to 10 times the number of variables and NP must be at 

least 4 to ensure that DE will have enough mutually different vectors with which to work. A value of F equal to 

0.5 is usually a good initial choice. If the population converges prematurely, then F and/or NP should be 

increased. The choice for CR is 0.9 or 1.0 is appropriate in order to see if a quick solution is possible since a 

large CR often speeds convergence.  

Williams - Otto Process Plant   

This problem addresses design optimization of Williams – Otto process plant as shown in Figure 2.  
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Fig.2. Williams - Otto process plant 

WO plant consists of a stirred tank reactor and separation system consisting of heat exchanger, decanter 

and distillation column. The plant is built to manufacture 0.6 kg/s of the distillate product P. The rate of reaction 
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is found to be negligible below 70ºC and substantial decomposition occurs above 110 ºC.  In the reactor, three 

exothermic second order reactions take place and are represented by the equations 6 to 8 

CBA 1k
                         (6) 

EPBC 2k
                         (7) 

GCP 3k
                         (8) 

The reaction coefficient of each individual reaction is represented by the classical Arrhenius form 
 TFexpUk iii                                     (9) 

where   

C fraction weight .,h106283.9U
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The reactor effluent contains six components; the flow rates of the raw materials A and B, the desired 

product P which is to removed by distillation, an intermediate compound C and E and byproduct G.  The inert 

material G is heavy oil becomes an insoluble in the effluent after the effluent stream is cooled, separated in the 

decanter and disposed of as a waste material. This waste treatment step incurs additional cost to the overall 

process plant. The recovery of desired product P will be incomplete as it forms an azeotropic mixture with the 

bottoms of the distillation column. Discarding a portion of the bottom product controls concentration of inert 

and others are recycled to the reactor. The reaction rates of the second order irreversible reactions taking place 

in WO plant are given by 
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The constraint equations are formulated by making independent material balances across the system, by 

a constraint on separation efficiency in the distillation column and by the definition of the total rate from the 

reactor. 

Optimization Problem Formulation 

The objective of the optimization of Williams -Otto plant is to maximize the percent return on 

investment. The percent return on investment is defined as the ratio of operating profit and total investment and 

is given by 

 









 V60F22.2F52.1955F336F96.201F84

V6

1
P RPGDA

           (13) 

 

 



Gopalakrishnan B et al /Int.J. ChemTech Res.2014-2015,7(4),pp 1682-1688. 1686 

 

The objective function is subject to the equality constraints formed from the material balance equations of the 

process. 

Overall Material Balance 

0FFFFFG DPGBA1 
                     (14) 

Constraint on the Separation Efficiency of the Distillation Column 

0FF 1.0FG PRERP2 
                 (15) 
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Material Balance on Component P 
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Material Balance on Component A 
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Material Balance on Component B 
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Material Balance on Component C 
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Material Balance on Component G 
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Definition of Total Flow Rate from the Reactor 
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 The optimization study of Williams -Otto chemical plant consists of twelve process variables which 

have influence on the percent return on investment and the variables are FA, FB, FD, FG, FR, FP, FRA, FRB, FRC, 

FRE, FRP, V and T.  Process variables in WO plant are highly nonlinear. The equality constraints formed from 

the material balance equations pose difficulties in locating the optimum values. 

* The original problem formulation is in FPS units.  

Solution Methodology 

A penalty function approach is used to handle the explicit constraints. Penalty terms are incorporated in 

the objective function, which reduce the fitness of the string according to the magnitude of their violations. The 

equation 23 describes the objective function for the design of WO plant.  

Maximize 
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C 110  T70                                    (26) 

Results and Discussion 

The results obtained using DE for the design optimization of the WO process plant. The optimal design 

results in S.I. units (based on DE) are also noticed in the WO process plant (Refer Table 1; P% =121.7 & CPU 

time =0.1s). As the investment cost is directly proportional to the mass of the reactor (600 V), the reduction in 

reactor volume requirement has a significant bearing on the outcome of the economics of the plant.  

Table 1: Performance analysis of DE based optimal design with other Evolutionary Techniques –WO 

process plant 

 

 

From the results, it is inferred that DE based optimization is found to be more successful in optimal 

design of WO plant. DE predicated design increases the percentage return on investment by maximum fine 

tuning of design variables. 

In all the three cases, the computational works are carried out in the platform of C++ in Core (TM) Due 

1.66 GHz processor. In addition, evolutionary computation parameters employed in this works are furnished in 

Table 2.  

Table 2: Computational parameters 

Control parameters Symbol value 

Population of each generation NP 20 

Weight Applied to Random Differential F 0.65 

Crossover Constant CR 1.0 

 

Variables GA DE 

FA (kg/s) 1.7075 1.701 

FB  (kg/s) 3.8730 3.878 

FD  (kg/s) 4.5759 4.575 

FG  (kg/s) 0.4045 0.405 

FP   (kg/s) 0.6001 0.6001 

FR  (kg/s) 47.3497 46.663 

FRA (kg/s) 6.1223 5.975 

FRB (kg/s) 18.7498 18.531 

FRC (kg/s) 1.0031 0.9792 

FRE (kg/s) 18.6090 18.339 

FRP (kg/s) 2.4610 2.434 

T    
o
c 101.54 101.539 

V    m
3
 0.8647 0.8706 

P % 121.54 121.7 

CPU Time (s) 0.5 0.1 



Gopalakrishnan B et al /Int.J. ChemTech Res.2014-2015,7(4),pp 1682-1688. 1688 

 

The present approach of finding design variables using DE is benefited from the fact that it never 

employs complicated mathematical computations and procedures as the algorithm is simple in nature and also 

found to be proficient in solving the complex problem with several variables and nonlinear constraints.   

Conclusions 

This paper demonstrates the successful application of Evolutionary algorithms for the optimal design of 

WO process plant. The result of the work indicates that DE is found to be better techniques than the genetic 

algorithm. DE can be considered as a complement to the global optimization techniques. DE based optimal 

design does not require complicated mathematical formulations and efficient in handling problems with large 

number of discrete variables and constraints.  
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